4,652 research outputs found

    Investigation of surface tension phenomena using the KC-135 aircraft

    Get PDF
    The microgravity environment of the KC-135 aircraft was utilized in three experiments designed to determine the following: (1) the feasibility of measuring critical wetting temperatures; (2) the effectiveness of surface tension as a means of keeping the cushioning heat transfer liquid in the furnace during ampoule translation; and (3) whether a non-wetting fluid would separate from the ampoule wall under low gravity conditions. This trio of investigations concerning surface phenomena demonstrates the effectiveness of the KC-135 as a microgravity research environment for small-scale, hand-held experiments

    From primal sketches to the recovery of intensity and reflectance representations

    Get PDF
    A local change in intensity (edge) is a characteristic that is preserved when an image is filtered through a bandpass filter. Primal sketch representations of images, using the bandpass-filtered data, have become a common process since Marr proposed his model for early human vision. Here, researchers move beyond the primal sketch extraction to the recovery of intensity and reflectance representations using only the bandpass-filtered data. Assessing the response of an ideal step edge to the Laplacian of Gaussian (NAb/A squared G) filter, they found that the resulting filtered data preserves the original change of intensity that created the edge in addition to the edge location. Using the filtered data, they can construct the primal sketches and recover the original (relative) intensity levels between the boundaries. It was found that the result of filtering an ideal step edge with the Intensity-Dependent Spatial Summation (IDS) filter preserves the actual intensity on both sides of the edge, in addition to the edge location. The IDS filter also preserves the reflectance ratio at the edge location. Therefore, one can recover the intensity levels between the edge boundaries as well as the (relative) reflectance representation. The recovery of the reflectance representation is of special interest as it erases shadowing degradations and other dependencies on temporal illumination. This method offers a new approach to low-level vision processing as well as to high data-compression coding. High compression can be gained by transmitting only the information associated with the edge location (edge primitives) that is necessary for the recover

    The effects of temperature gradient and growth rate on the morphology and fatigue properties of MAR-M246(Hf)

    Get PDF
    MAR-M246(Hf) is a nickel based superalloy used in the turbopump blades of the Space Shuttle main engines. The effects are considered of temperature gradient (G) and growth rate (R) on the microstructure and fatigue properties of this superalloy. The primary dendrite arm spacings were found to be inversely proportional to both temperature gradient and growth rate. Carbide and gamma - gamma prime morphology trends were related to G/R ratios. Weibull analysis of fatigue results shows the characteristic life to be larger by a factor of 10 for the low gradient/fast rate pairing of G and R, while the reliability (beta) was lower

    Comparison of Campylobacter coli strains isolated from pigs and humans - porcine strains a possible source of human infection?

    Get PDF
    The primary aim of this study was to detect and genotype Campylobacter strains from pigs and humans. AFLP (amplified fragment length polymorphism) analysis was used to compare different genotypes to identify the genetic diversity of Campylobacter coli (C. coli) strains. Heterogeneous patterns were detectable among the porcine and human C. coli pool. By using an optimized extraction method combined with a PCR it was possible to detect C. coli DNA in some samples of the investigated minced meat but it could not be distinguished between dead bacterial cells and viable but nonculturable cell (VBNC)-forms of C. coli strains

    Genomic Analysis of the Only Blind Cichlid Reveals Extensive Inactivation in Eye and Pigment Formation Genes

    Get PDF
    Trait loss represents an intriguing evolutionary problem, particularly when it occurs across independent lineages. Fishes in light-poor environments often evolve “troglomorphic” traits, including reduction or loss of both pigment and eyes. Here, we investigate the genomic basis of trait loss in a blind and depigmented African cichlid, Lamprologus lethops, and explore evolutionary forces (selection and drift) that may have contributed to these losses. This species, the only known blind cichlid, is endemic to the lower Congo River. Available evidence suggests that it inhabits deep, low-light habitats. Using genome sequencing, we show that genes related to eye formation and pigmentation, as well as other traits associated with troglomorphism, accumulated inactivating mutations rapidly after speciation. A number of the genes affected in L. lethops are also implicated in troglomorphic phenotypes in Mexican cavefish (Astyanax mexicanus) and other species. Analysis of heterozygosity patterns across the genome indicates that L. lethops underwent a significant population bottleneck roughly 1 Ma, after which effective population sizes remained low. Branch-length tests on a subset of genes with inactivating mutations show little evidence of directional selection; however, low overall heterozygosity may reduce statistical power to detect such signals. Overall, genome-wide patterns suggest that accelerated genetic drift from a severe bottleneck, perhaps aided by directional selection for the loss of physiologically expensive traits, caused inactivating mutations to fix rapidly in this species

    Evolutionary Responses of Marine Organisms to Urbanized Seascapes

    Get PDF
    Many of the world\u27s major cities are located in coastal zones, resulting in urban and industrial impacts on adjacent marine ecosystems. These pressures, which include pollutants, sewage, runoff and debris, temperature increases, hardened shorelines/structures, and light and acoustic pollution, have resulted in new evolutionary landscapes for coastal marine organisms. Marine environmental changes influenced by urbanization may create new selective regimes or may influence neutral evolution via impacts on gene flow or partitioning of genetic diversity across seascapes. While some urban selective pressures, such as hardened surfaces, are similar to those experienced by terrestrial species, others, such as oxidative stress, are specific to aquatic environments. Moreover, spatial and temporal scales of evolutionary responses may differ in the ocean due to the spatial extent of selective pressures and greater capacity for dispersal/gene flow. Here, we present a conceptual framework and synthesis of current research on evolutionary responses of marine organisms to urban pressures. We review urban impacts on genetic diversity and gene flow and examine evidence that marine species are adapting, or are predicted to adapt, to urbanization over rapid evolutionary time frames. Our findings indicate that in the majority of studies, urban stressors are correlated with reduced genetic diversity. Genetic structure is often increased in urbanized settings, but artificial structures can also act as stepping stones for some hard‐surface specialists, promoting range expansion. Most evidence for rapid adaptation to urban stressors comes from studies of heritable tolerance to pollutants in a relatively small number of species; however, the majority of marine ecotoxicology studies do not test directly for heritability. Finally, we highlight current gaps in our understanding of evolutionary processes in marine urban environments and present a framework for future research to address these gaps

    Studies in Bahaism

    Get PDF
    corecore